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Context & Motivation: Direct detection history
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Dark Matter Limit Plotter v5.00, updated Feb 14, 2019.
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Context & Motivation: community interest - new candidates

Single electron sensitivity opens several order of magnitude in mass and
cross section for small projects.
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DOE report for basic research needs for Dark Matter Science.
https://science.energy.gov/~/media/hep/pdf/Reports/Dark_Matter_New_Initiatives_rpt.pdf
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SENSEI: lower the energy threshold to look for light DM candidates

Detect DM-e interactions by measuring the ionization
produced by the electron recoils. See arXiv:1509.01598

Idea: use electrons in the bulk silicon from a CCD as target
CCD

pixel
[ —

O —i

valence band

conduction
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This requires very low noise!
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Typical e -recoil spectrum for benchmark models
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@ the sensitivity is limited by the lowest charge bin.
@ background impact is reduced due to the small energy window.

@ main background for semiconductors detectors is the dark current.
£ Fermilab
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SENSEI: Sub-Electron-Noise SkipperCCD Experimental Instrument

SENSEI LDRD Collaboration (2015)

Develop a CCD-based detector with an energy threshold close to the
silicon band gap (1.1 eV) using SkipperCCDs produced at LBL MSL

@ Fermilab: Tiffenberg, Guardincerri, Sofo Haro @ Tel Aviv University: Tomer Volansky

@ Stony Brook: Rouven Essig @ University of Oregon: Tien-Tien Yu
@ LBNL: Steve Holland, Christopher Bebek @ Stanford University*: Jeremy Mardon
v

Successful completion of LDRD objectives (2017)

@ Build the first working detector using Skipper-CCDs.
o Validate the technology for DM and v experiments.

» Probe DM masses at the MeV scale through electron recoil.
» Probe axion and hidden-photon DM with masses down to 1 eV.

.
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SENSEI Collaboration

Build a detector using Skipper-CCDs to search for light DM canditates

# Fe rm i I a b q\\\\ Stony Brook University @OO gﬁgagf\?

50 Years of Discovery TEL AVIV UNIVERSITY

@ Fermilab: Michael Crisler, Alex Drlica-Wagner, Juan Estrada,
Guillermo Fernandez, Miguel Sofo Haro, Javier Tiffenberg

Oregon University: Tien-Tien Yu
Stony Brook: Rouven Essig
Tel Aviv University: Liron Barack, Erez Ezion, Tomer Volansky

+ several additional students + more to come

Fully funded by Heising-Simons Foundation & Fermilab
\ HEISING-SIMONS

v
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CCD: readout

3x3 pixels CCD P1PaPsPiPePs state
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CCD: readout

3x3 pixels CCD P1PaPsPiPePs state
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CCD: readout

3x3 pixels CCD P1PaPsPiPePs state
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CCD: readout

3x3 pixels CCD P1PaPsPiPePs state
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CCD: reado
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capacitance of the system is set by the SN: C=0.05pF— 3uV/e J
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CCD: readout
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CCD: readout
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CCD: readout

pixel charge
measurement

high frequency
noise

low frequency
noise

pedestal ‘v:ltzgieedifz. t;L:eeto

I
Il

excellent for removing high frequency noise but sensitive to low frequenciesJ
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Readout noise: empty pixels distribution, regular scientific CCD
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2 e~ readout noise roughly corresponds to 50 eV energy threshold

Z& Fermilab

Physics Colloquium at University of Oregon, April 9, 2019 10



Lowering the noise: Skipper CCD
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readout stage
is replaced

Only the readout stage is modified
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Lowering the noise: Skipper CCD

e Main difference: the Skipper CCD allows multiple sampling of the
same pixel without corrupting the charge packet.

@ The final pixel value is the average of the samples
Pixel value = %Z,’V (pixel sample);

o Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)
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Lowering the noise: Skipper CCD

e Main difference: the Skipper CCD allows multiple sampling of the
same pixel without corrupting the charge packet.

@ The final pixel value is the average of the samples
Pixel value = %Z,’V (pixel sample);

o Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

Regular CCD Skipper CCD
signal

phel charge _pedestal_ || JUutiuu oo
measurement —_—
high frequency ’
noise

low frequency
noise
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SENSEI: First working instrument using SkipperCCD tech

Sensors

Skipper-CCD prototype designed at LBL MSL
200 & 250 pum thick, 15 um pixel size
Two form factors 4kx 1k (0.5gr) & 1.2kx0.7k pixels

Parasitic run, optic coating and Si resistivity ~10kQ2

®© 6 66 o ¢

4 amplifiers per CCD, three different RO stage designs

Instrument

System integration done at Fermilab

Custom cold electronics
Modified DES electronics for read out

Firmware and image processing software

Optimization of operation parameters

£ Fermilab
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Image taken with SENSEI: 4000 samples per pixel (processed)
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Image taken with SENSEI: 4000 samples per pixel (processed)
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Image taken with SENSEI: 4000 samples per pixel (processed)
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Image taken with SENSEI: 4000 samples per pixel (processed)
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Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples
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Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples
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Counting electrons: 0, 1, 2..

Standard CCD mode: charge in New Skipper CCD: charge in each
each pixel is measured once pixel is measured multiple times
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Counting electrons: ..48, 49, 50..

4000 samples

#entries
S P
o (4]
o o

OLLIIlIlllllllllIlllllllllIlllllllllllllllllllll

w
A
o

300
250
200
150
100

50

llIlllIIllllllllllllllllllllllllllllllllllll

b
—
P

MMM}MMMMAJLJ\JMMJ\AM“JLI\MMMA o

charge [e]

Z& Fermilab

Physics Colloquium at University of Oregon, April 9, 2019 17



%Fe X-ray source

4000 samples
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%Fe X-ray source

4000 samples
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keep counting: ..15650, 1551, 1552..

4000 samples
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Noise vs. #samples - 1//N
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protoSENSEI: technology demonstrator

We used the parasitically-fabricated R&D sensors to learn how to
optimize operations and produce early-science results

Z& Fermilab
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protoSENSEI: technology demonstrator

readout stages

200 um thick
0.1 gram mass

We used the parasitically-fabricated R&D sensors to learn how to
optimize operations and produce early-science results
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protoSENSEI: project timeline

RO electronics optimization &

integration characterization
] MINOS installation MINOS run
start
t + +
Jan16 Jun16 Jan17 Aprl7 ||

[ee

N t!,lﬁ A i
commissi;:ﬁg_' Dep'wa‘*ANos

run at suiface. | ]| and datataking

explore high xsec explore small xsec
arXiv:1804.00088 arXiv:1901.10478
4& Fermilab
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Current step: Prototype running @MINOS

Technology demonstration: installation at shallow underground site J

Z& Fermilab
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protoSENSEI @MINOS: raw image/data (70 min exposure)

200 pixels

370 pixels
3 e- or more

adjacent pixels with one or more electrons are grouped together

Jt H
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protoSENSEI @MINQOS: clustering and event reconstruction

neighbour mask
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adjacent pixels with one or more electrons are grouped together
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protoSENSEI @MINOQOS: selection cuts
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protoSENSEI @MINQOS: geometric cuts

200 — fiducial region

Ltalk
sk

\
halo neighbour mask
maSKi/bleeding zone mask

high-energy

event charge shift
edge\mask directions
readout 50 100 150 200 250 _~ 300 350
stage horizontal-coordinate [pixel]

Edges and column dependence.
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Column dependence may point to different readout scheme

¢ continuous—readout
¢ continuous-readout

¢  continuous-readout

¢ periodic-readout

s ks s s
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protoSENSEI @MINOS: efficiency and exposure

Ne periodic continuous

Cuts 1 | 2 | 3 3 ] 4 ] 5

1. DM in single pixel 1 | 062 ] 048 [ 048 | 041 [ 0.36
2. Nearest Neighbour 0.92 0.96

3. Electronic Noise 1 ~1

4. Edge 0.92 0.88

5. Bleeding 0.71 0.98

6. Halo 0.80 0.99

7. Cross-talk 0.99 ~1

8. Bad columns 0.80 0.94

Total Efficiency 038 | 024 | 0.18 037 | 031 | 0.28
Eff. Expo. [g day] 0.069 | 0.043 | 0.033 || 0.085 | 0.073 | 0.064

’ Number of events H 2353 ‘ 21 \ 0 H 0 \ 0 \ 0 ‘
£ Fermilab
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protoSENSEI @MINQOS: all the information, pick your model

Ne periodic continuous

Cuts 1 | 2 | 3 3 ] 4 ] 5

1. DM in single pixel 1 | 062 ] 048 [ 048 | 041 [ 0.36
2. Nearest Neighbour 0.92 0.96

3. Electronic Noise 1 ~1

4. Edge 0.92 0.88

5. Bleeding 0.71 0.98

6. Halo 0.80 0.99

7. Cross-talk 0.99 ~1

8. Bad columns 0.80 0.94

Total Efficiency 038 | 024 | 0.18 037 | 031 | 0.28
Eff. Expo. [g day] 0.069 | 0.043 | 0.033 || 0.085 | 0.073 | 0.064

’ Number of events H 2353 ‘ 21 \ 0 H 0 \ 0 \ 0 ‘
£ Fermilab
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protoSENSEI @MINOQOS: event spectra

Continuous readout Periodic readout
° T 0 g AN RS S RS AR R A H
10 ? ‘ ‘ cc‘mtil"xuou‘s-re‘ado&t ‘ 0 periodic-readout f
,E 10° ? Exposure: 0.177 g day g 10 Exposure: 0.069 g day E
‘o L 0.058 g day ‘6 10 gaussian fit |
Q E — ——-0.067 g day Q E
S 0.052 g day S 1o -
o] N, o) 3
2 " 2 3
> ) > |
] a o -
1w K
R S B KU R S - S ( B I S R S S ¥ S
Charge [¢'] Charge [¢]
@ No events with 3e~ or more
o Seems to follow a Poisson distribution. Still under studies.
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protoSENSEI @MINOS: results

Light Dark Photon
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What are the next steps for SENSEI?

@ 10 gram Skipper CCD system in 2019.

@ 100-gram Skipper CCD system in 2020.

we know how to build hundred-grams CCD systems
(DAMIC, CONNIE).

£% Fermilab
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Dark current measurements and expectation

DC (e-/pix/day)

10+ General purpouse CCD setups. No IR cover. At sea level.
Output transistor ON.

1 SENSEI prototype surface run (low resistiv. Si) and
. CONNIE experiment (high resistiv. Si). ~IR cover.
107+ At sea level. Output transistor ON.
1024
SENSEI prototype run (low resistiv. Si). ~IR cover.
1034 At MINOS (100m underground).
DAMIC experiment run (high resistiv. Si). ~IR cover.
1044 At SNOLAB (2km underground). Output transistor ON.

1054« SENSEI expectation
with high resistivity Si. IR cover. At SNOLAB

106 (2km underground).Output transistor OFF.

10-7i4_Theoretical expectation. Janesick, SPIE press, 2001.
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Physics Colloquium at University of Oregon, April 9, 2019 34



SENSEI threshold vs dark current

@ Counting electrons = noise has zero impact
@ |t can take about 1h to read the sensors

o Dark Current is the limiting factor

It's better to readout continuously to minimize the impact of the DC

Dark Current >1le™ > 2e~ > 3e™
[epix 'day™' ]| [pix] [pix] [pix]
1073 1x108 3x10® 7x1072
10~3 1x10° 3x1071 7x10°8
10~7 1x10* 3x107® 7x10714

Operation mode (continuous-RO or long-exposures) will depend on the
measured DC and spurious charge of the Science sensors

£% Fermilab
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SENSEI: reach of a 100g, zeroish-background experiment

Light Dark Photon Heavy Dark Photon

1073 . . : . 1073%

10—32 XENON100
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10734k
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107381

Beam dump
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Searches

10—39_
10740k

Fpw=(am,/q)*
10—41 1 | 1 '\M kv 10—41
1 10 102 103 10* 10° 1

103
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SENSEI: electron recoil background requirements

The sensitivity is dominated by the lowest energy/charge bin

10731 T T T T
10-321 XENON100 8 1
N My = 10 MeV
1077 3 L
XENONI0 0.1 Fome1/q?
1073k
£ 0.01
— 107%E °
E § 1073k
S 1073k 5
B _‘57' E -
1077 4l
§ 10
10738k
1075k
10k
- =<2 1076
10740k sv Fom=(am/q)*
10_41 ) ) ) /:u < keV 1 0_7
1 10 10° 10 10* 10° 1 2 3 4 5 6 7 8 9 10 1
my [MeV] Q
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SENSEI: electron recoil background requirements

Back of the envelope calculation

A 100g detector that takes data for one year — Expo = 36.5kg - day

Assuming same background as in DAMIC:
o 5 DRU (events-kg~1-day~1-keV—1) in the 0-1keV range
— kag = 36.5 kg - day X 5 DRU = 182.5 events

v

£% Fermilab
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SENSEI: electron recoil background requirements
Back of the envelope calculation

A 100g detector that takes data for one year — Expo = 36.5kg - day
Assuming same background as in DAMIC:
o 5 DRU (events-kg~1-day~1-keV—1) in the 0-1keV range
— kag = 36.5 kg - day X 5 DRU = 182.5 events
@ Dominated by external gammas — flat Compton spectrum

LA
1keV

/
7/

#event

12345 " 278 > €]
182.5 events over the 278 charge bins in the 0-1keV range
Expect 0.65 bkd events in the lowest (2 e~) charge-bin

Jt H
3¢ Fermilab
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Snolab vacuum vessel design

Cold copper (@) Copper bell
box for CCD 7 R
modules

Flex
cables
slot

Heat
shield

Service
Inner access
ports

3 Fermilab
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Snolab shield design

5cm lead

15cm
copper

50cm HDPE/Water
neutron shield

3 Fermilab
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Timeline

>

2016 I 2017
L
) LDRD funded, I testing of prototype,
fabrication of SkipperCCD received funding from HSF
prototype for SENSEI experiment
2018 I 2019
L
L} N I
early sqence from protqtypes SENSEI at MINOS (~10 gr)
and design and fabrication of commissioning at Snolab (~100 gr)
SENSEI experiment 9 9
2020 I 2021
L
g |

analisis of SENSEI at Minos
and take data at Snolab

Physics Colloquium at University of Oregon, April 9, 2019

analisis of Snolab data
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SENSEI path

@ SENSEI is the first dedicated experiment searching for electron-DM
interactions

@ protoSENSEI at the surface probed 0.5-4 MeV masses for the first
time, and larger xsec than existing direct-detection constraints

@ protoSENSEI at MINQOS produced best limit for light DM with
masses bellow 5 MeV

@ SENSEI experiment will use better sensors & collect almost 2 million
times the exposure of this surface run in next ~2-3 years, probing
large regions of uncharted territory populated by popular models

o Fully funded: 10g & 100g design done, construction started.

» Grant from Heising-Simons Foundation
» Full technical support from Fermilab

v

£% Fermilab
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BACK UP SLIDES

£% Fermilab
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SENSEI: reach of a 100g, zeroish-background experiment

Dark photon (A’)

Axion-like-particle (ALP)

1071
- Stellar
10 " Constraints
10714 Lo | SENSEI-1Q, 1 mon
N SENSEI-100, 1 mont
N ]
107
10-12] SENSEI-100, 1 yr
10716
-17 10713 | | |
1077y 10 T e 1 10 102 10° 104
my [eV] mg [eV]
Jt H
3¢ Fermilab
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SENSEI: electron recoil background requirements

A more detailed analysis: Klein-Nishina 4+ binding energy correction

o at lower energies atomic binding energies are relevant

=
10,
4

#events per bin
N
o

0151~
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SENSEI: electron recoil background requirements

A more detailed analysis: Klein-Nishina 4+ binding energy correction

o at lower energies atomic binding energies are relevant
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SENSEI: electron recoil background requirements

A more detailed analysis: Klein-Nishina 4+ binding energy correction

o at lower energies atomic binding energies are relevant

#events
o
o o
o w
=
(=]
1%

I
[

e
o

4
o
a

o
o
a
T T T T T [ T T T T T
I I I I I

ol Lol L
10?2 10"

10

-
32
&
~E

10?
E [keV]

v

Z& Fermilab

Physics Colloquium at University of Oregon, April 9, 2019 45



SENSEI: electron recoil background requirements

A more detailed analysis: MC simulation, G4 3D Monash model
o at lower energies atomic binding energies are relevant

e partial energy depositions populate low E region (thin det)
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SENSEI: electron recoil background requirements

A more detailed analysis: MC simulation, G4 3D Monash model

@ at lower energies atomic binding energies are relevant

e partial energy depositions populate low E region (thin det)
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SENSEI: electron recoil background requirements

A more detailed analysis: MC simulation, G4 3D Monash model

@ at lower energies atomic binding energies are relevant

e partial energy depositions populate low E region (thin det)
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SENSEI: electron recoil background requirements

A more detailed analysis: MC simulation, G4 3D Monash model

@ at lower energies atomic binding energies are relevant

e partial energy depositions populate low E region (thin det)
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SENSEI: electron recoil background requirements

A more detailed analysis: MC simulation, G4 3D Monash model

@ at lower energies atomic binding energies are relevant

Y partia| enerov denncitinne nannlate lnw F roaginn (thin det)
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protoSENSEI: commissioning run at surface: arXiv:1804.00088

Observed spectrum using 800 samples per pixel
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protoSENSEI: commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between ~500 keV to 4 MeV!
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Terrestrial effects: Emken, Essig, Kouvaris, Sholapurkar (to appear) J
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Selection efficiency

Ne,min
Cuts 1 2 3 4 5
1. Single pixel 1 0.62 | 0.48 | 0.41 | 0.37
2. Nearest Neighbor 0.8 0.8 0.8 | 0.8 | 0.8
3. Noise 0.88 0.88 | 0.88 | 0.88 | 0.88
4. Bleeding 0.95 0.95 | 0.95 | 0.95 | 0.95
Total 0.67 041 | 032 ] 027 | 0.24

Number of events || 140,302 [ 4,676 | 131 [ 1 | 0 |
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Diffusion
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Hardware binning

SN
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The optimal effective pixel size can be chosen by using hw binning
Hsigle = RDC X (Tpix X npix) = Mbinning = (nbin X RDC) X Tpix X npix/nbin
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SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between ~500 keV to 4 MeV!
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SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between ~500 keV to 4 MeV!
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Image taken with SENSEI: 20 samples per pixel

Single pixel distribution: X-rays from °°Fe
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The gain is the same for all the samples
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