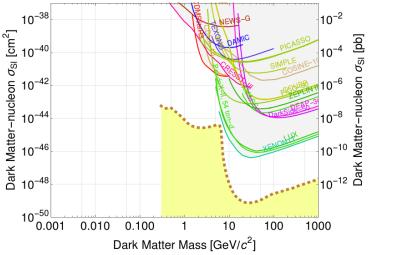
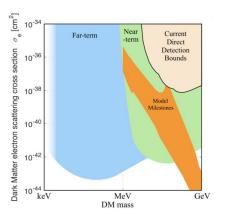
SENSEI† first results, status and plans


Javier Tiffenberg for the SENSEI Collaboration

May 9, 2019

† Sub-Electron-Noise SkipperCCD Experimental Instrument

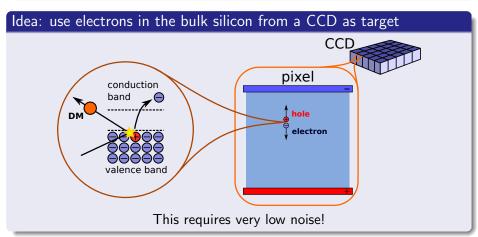
Context & Motivation: Direct detection history



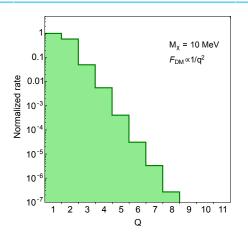
Dark Matter Limit Plotter v5.00, updated Feb 14, 2019.

Context & Motivation: community interest - new candidates

Single electron sensitivity opens several order of magnitude in mass and cross section for small projects.



DOE report for basic research needs for Dark Matter Science. https://science.energy.gov/~/media/hep/pdf/Reports/Dark_Matter_New_Initiatives_rpt.pdf



SENSEI: lower the energy threshold to look for light DM candidates

Detect DM-e interactions by measuring the ionization produced by the electron recoils. See arXiv:1509.01598

Typical e⁻-recoil spectrum for benchmark models

- the sensitivity is limited by the lowest charge bin.
- background impact is reduced due to the small energy window.
- main background for semiconductors detectors is the dark current.

SENSEI: Sub-Electron-Noise SkipperCCD Experimental Instrument

SENSEI LDRD Collaboration (2015)

Develop a CCD-based detector with an energy threshold close to the silicon band gap (1.1 eV) using SkipperCCDs produced at LBL MSL

- Fermilab: Tiffenberg, Guardincerri, Sofo Haro
- Stony Brook: Rouven Essig
- LBNL: Steve Holland, Christopher Bebek

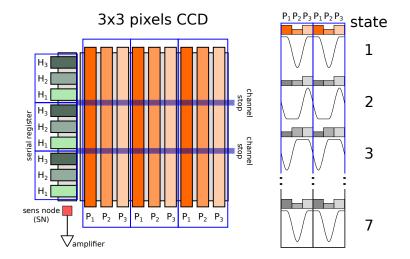
- Tel Aviv University: Tomer Volansky
- University of Oregon: Tien-Tien Yu
- Stanford University*: Jeremy Mardon

Successful completion of LDRD objectives (2017)

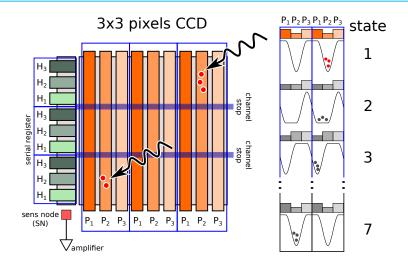
- Build the first working detector using Skipper-CCDs.
- ullet Validate the technology for DM and u experiments.
 - Probe DM masses at the MeV scale through electron recoil.
 - Probe axion and hidden-photon DM with masses down to 1 eV.

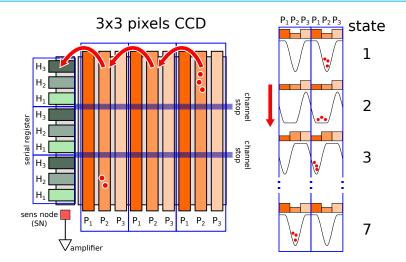
SENSEI Collaboration

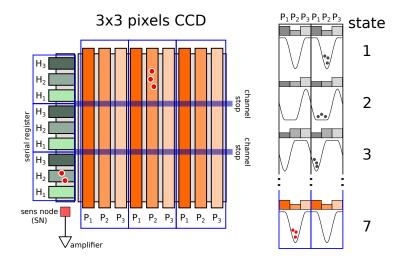
Build a detector using Skipper-CCDs to search for light DM canditates

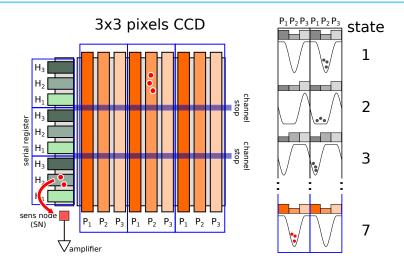


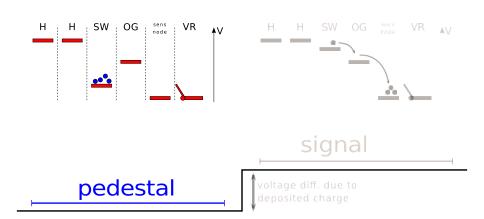
- Fermilab: Michael Crisler, Alex Drlica-Wagner, Juan Estrada, Guillermo Fernandez, Miguel Sofo Haro, Javier Tiffenberg
- Oregon University: Tien-Tien Yu
- Stony Brook: Rouven Essig
- Tel Aviv University: Liron Barack, Erez Ezion, Tomer Volansky
- + several additional students + more to come

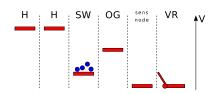

Fully funded by Heising-Simons Foundation & Fermilab

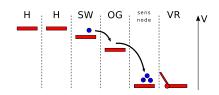










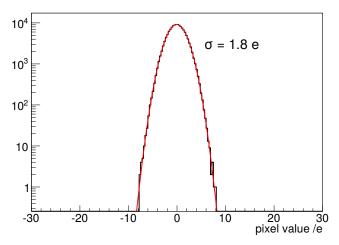


capacitance of the system is set by the SN: $C{=}0.05 \mathrm{pF}{\to}3\mu\mathrm{V/e}$

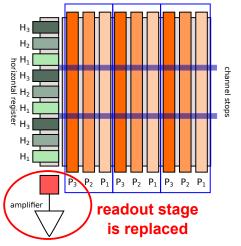
signal

pedestal

voltage diff. due to deposited charge

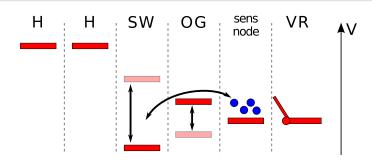


excellent for removing high frequency noise but sensitive to low frequencies


Readout noise: empty pixels distribution, regular scientific CCD

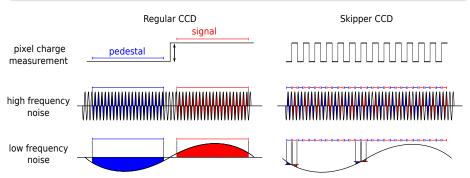
2 e⁻ readout noise roughly corresponds to 50 eV energy threshold

Lowering the noise: Skipper CCD



Only the readout stage is modified

Lowering the noise: Skipper CCD

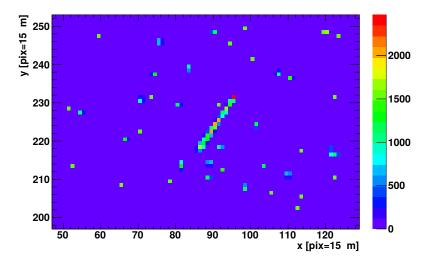

- Main difference: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples Pixel value = $\frac{1}{N}\Sigma_{i}^{N}$ (pixel sample);
- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

Lowering the noise: Skipper CCD

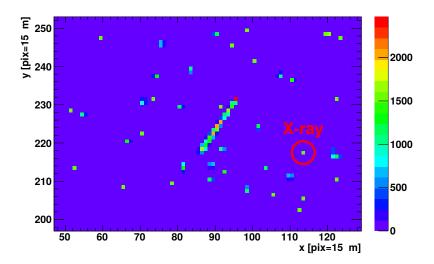
- Main difference: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples Pixel value = $\frac{1}{N}\Sigma_{i}^{N}$ (pixel sample);
- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

SENSEI: First working instrument using SkipperCCD tech

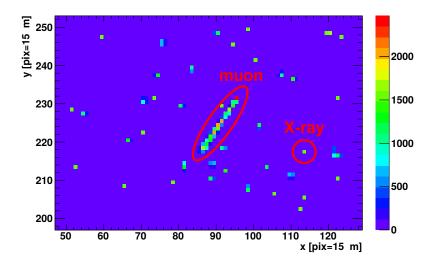
Sensors

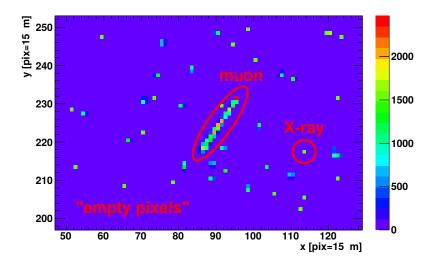

- Skipper-CCD prototype designed at LBL MSL
- \bullet 200 & 250 μ m thick, 15 μ m pixel size
- Two form factors $4k \times 1k$ (0.5gr) & $1.2k \times 0.7k$ pixels
- \bullet Parasitic run, optic coating and Si resistivity ${\sim}10 k\Omega$
- 4 amplifiers per CCD, three different RO stage designs

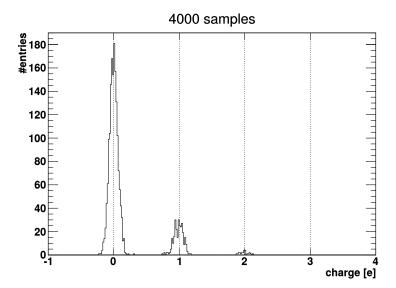
Instrument

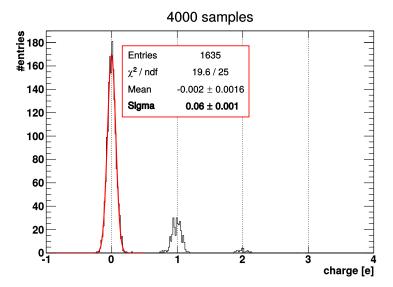


- System integration done at Fermilab
- Custom cold electronics
- Modified DES electronics for read out
- Firmware and image processing software
- Optimization of operation parameters

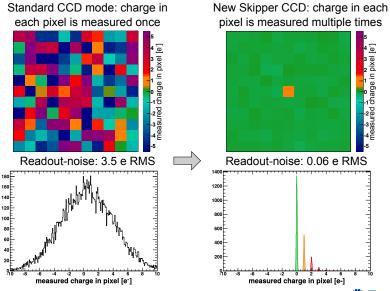




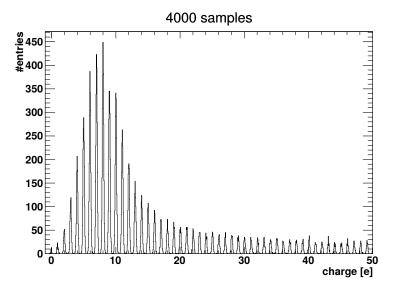




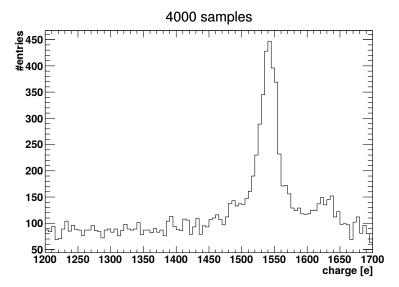
Charge in pixel distribution. Counting electrons: 0, 1, 2...



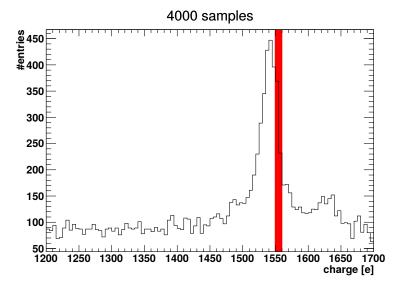
Charge in pixel distribution. Counting electrons: 0, 1, 2...



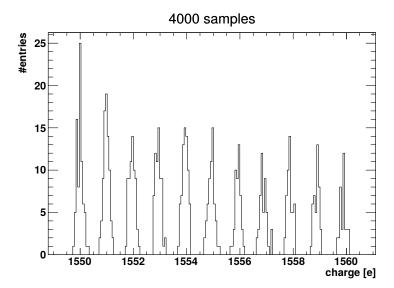
Counting electrons: 0, 1, 2...



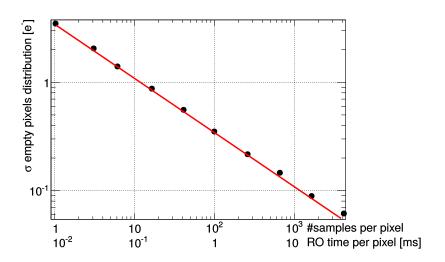
Counting electrons: ..48, 49, 50...



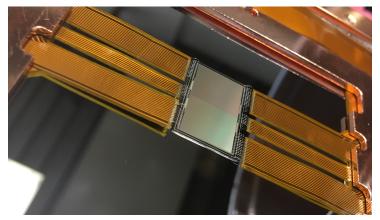
⁵⁵Fe X-ray source



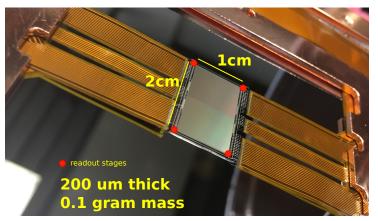
⁵⁵Fe X-ray source



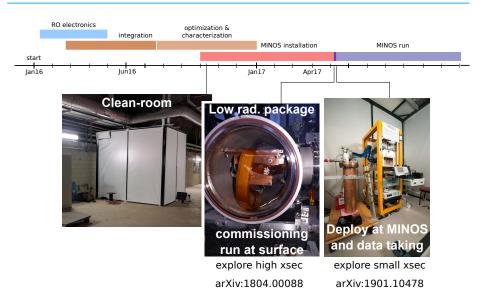
keep counting: ..1550, 1551, 1552...



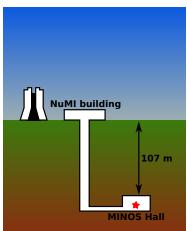
Noise vs. #samples - $1/\sqrt{N}$

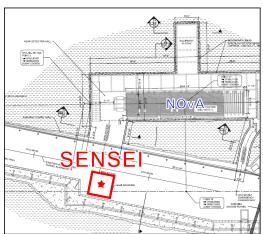

protoSENSEI: technology demonstrator

We used the parasitically-fabricated R&D sensors to learn how to optimize operations and produce early-science results

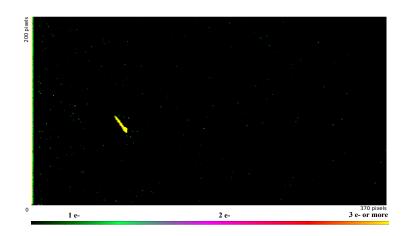

protoSENSEI: technology demonstrator

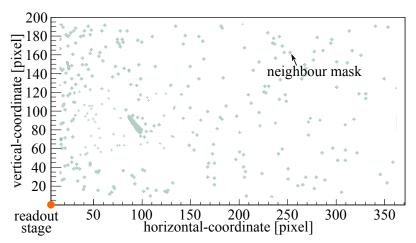
We used the parasitically-fabricated R&D sensors to learn how to optimize operations and produce early-science results


protoSENSEI: project timeline

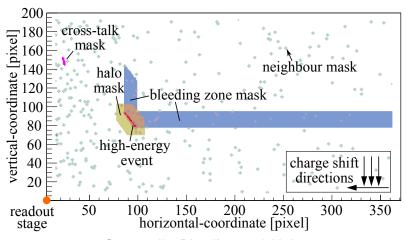


Current step: Prototype running @MINOS

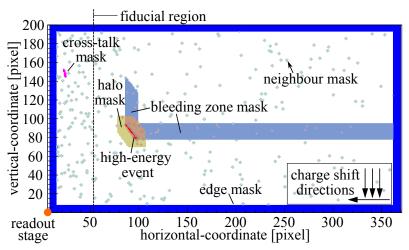

Technology demonstration: installation at shallow underground site

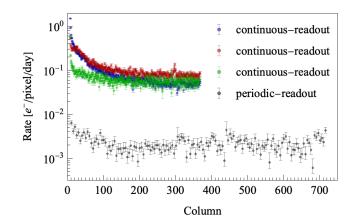

protoSENSEI @MINOS: raw image/data (70 min exposure)

adjacent pixels with one or more electrons are grouped together


protoSENSEI @MINOS: clustering and event reconstruction

adjacent pixels with one or more electrons are grouped together


protoSENSEI @MINOS: selection cuts

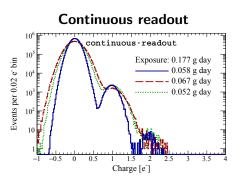

protoSENSEI @MINOS: geometric cuts

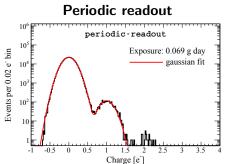
Edges and column dependence.

Column dependence may point to different readout scheme

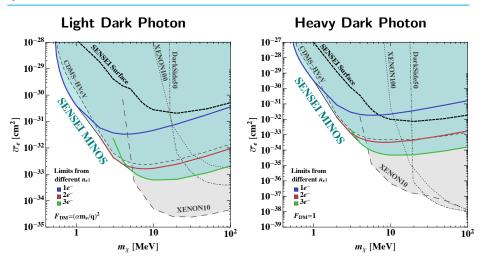
protoSENSEI @MINOS: efficiency and exposure

N_e	periodic			continuous			
Cuts	1	2	3	3	4	5	
1. DM in single pixel	1	0.62	0.48	0.48	0.41	0.36	
2. Nearest Neighbour	0.92			0.96			
3. Electronic Noise	1			~1			
4. Edge	0.92			0.88			
5. Bleeding	0.71			0.98			
6. Halo	0.80			0.99			
7. Cross-talk	0.99			~1			
8. Bad columns	0.80			0.94			
Total Efficiency	0.38	0.24	0.18	0.37	0.31	0.28	
Eff. Expo. [g day]	0.069	0.043	0.033	0.085	0.073	0.064	
Number of events	2353	21	0	0	0	0	




protoSENSEI @MINOS: all the information, pick your model

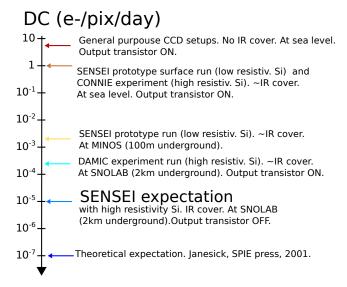
N_e	periodic			continuous			
Cuts	1	2	3	3	4	5	
1. DM in single pixel	1	0.62	0.48	0.48	0.41	0.36	
2. Nearest Neighbour	0.92			0.96			
3. Electronic Noise	1			~1			
4. Edge	0.92			0.88			
5. Bleeding	0.71			0.98			
6. Halo	0.80			0.99			
7. Cross-talk	0.99			~1			
8. Bad columns	0.80			0.94			
Total Efficiency	0.38	0.24	0.18	0.37	0.31	0.28	
Eff. Expo. [g day]	0.069	0.043	0.033	0.085	0.073	0.064	
Number of events	2353	21	0	0	0	0	


protoSENSEI @MINOS: event spectra

- No events with 3e⁻ or more
- Seems to follow a Poisson distribution. Still under studies.

protoSENSEI @MINOS: results

World best limit below 5 MeV!!



What are the next steps for SENSEI?

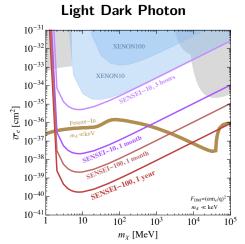
- 10 gram Skipper CCD system in 2019.
- 100-gram Skipper CCD system in 2020.

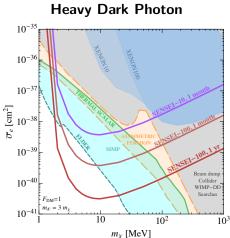
we know how to build hundred-grams CCD systems (DAMIC, CONNIE).

Dark current measurements and expectation

SENSEI threshold vs dark current

- Counting electrons ⇒ noise has zero impact
- It can take about 1h to read the sensors
- Dark Current is the limiting factor


It's better to readout continuously to minimize the impact of the DC


Dark Current	≥ 1e ⁻	≥ 2e ⁻	\geq 3e $^-$
$\left[\mathrm{e^-pix^{-1}day^{-1}}\right]$	[pix]	[pix]	[pix]
10^{-3}	1×10^8	3×10^3	7×10^{-2}
10^{-5}	1×10^6	3×10^{-1}	7×10^{-8}
10 ⁻⁷	1×10^4	3×10^{-5}	7×10^{-14}

Operation mode (continuous-RO or long-exposures) will depend on the measured DC and spurious charge of the Science sensors

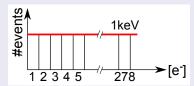
SENSEI: reach of a 100g, zeroish-background experiment

The sensitivity is dominated by the lowest energy/charge bin

Back of the envelope calculation

A 100g detector that takes data for one year \rightarrow Expo = 36.5kg \cdot day

Assuming same background as in DAMIC:

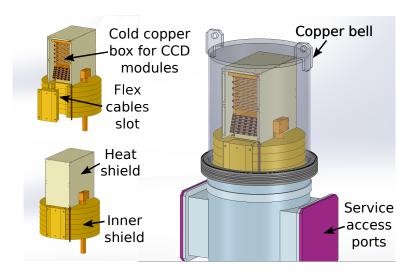

- 5 DRU (events·kg⁻¹·day⁻¹·keV⁻¹) in the 0-1keV range $\rightarrow N_{bkg} = 36.5 \text{ kg} \cdot \text{day} \times 5 \text{ DRU} = 182.5 \text{ events}$
- Dominated by external gammas → flat Compton spectrum

Back of the envelope calculation

A 100g detector that takes data for one year \rightarrow Expo = 36.5kg \cdot day

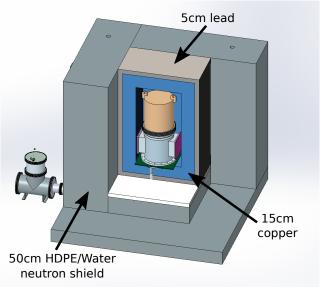
Assuming same background as in DAMIC:

- 5 DRU (events·kg⁻¹·day⁻¹·keV⁻¹) in the 0-1keV range $\rightarrow N_{bkg} = 36.5 \text{ kg} \cdot \text{day} \times 5 \text{ DRU} = 182.5 \text{ events}$
 - Dominated by external gammas → flat Compton spectrum

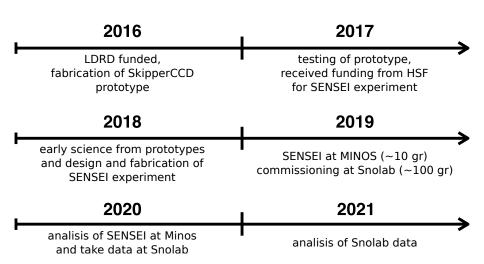


182.5 events over the 278 charge bins in the 0-1keV range

Expect 0.65 bkd events in the lowest (2 e⁻) charge-bin



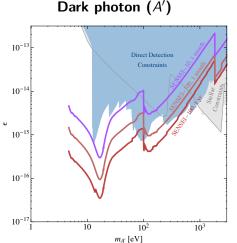
Snolab vacuum vessel design



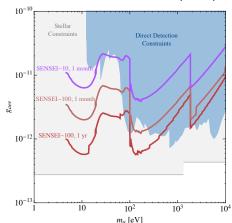
Snolab shield design

Timeline

SENSEI path

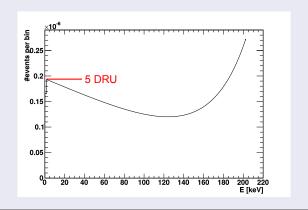

Summary

- SENSEI is the first dedicated experiment searching for electron-DM interactions
- protoSENSEI at the surface probed 0.5-4 MeV masses for the first time, and larger xsec than existing direct-detection constraints
- protoSENSEI at MINOS produced best limit for light DM with masses bellow 5 MeV
- SENSEI experiment will use better sensors & collect almost 2 million times the exposure of this surface run in next \sim 2-3 years, probing large regions of uncharted territory populated by popular models
- Fully funded: 10g & 100g design done, construction started.
 - Grant from Heising-Simons Foundation
 - Full technical support from Fermilab

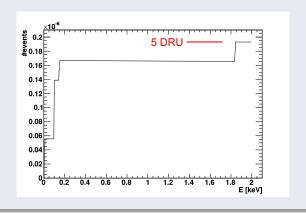


BACK UP SLIDES

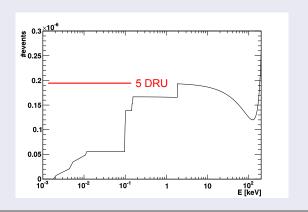
SENSEI: reach of a 100g, zeroish-background experiment

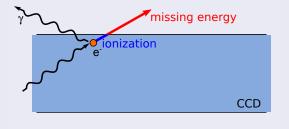

Axion-like-particle (ALP)

A more detailed analysis: Klein-Nishina + binding energy correction

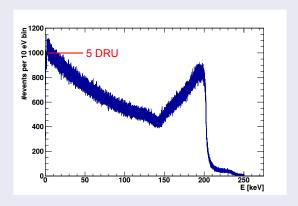

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

A more detailed analysis: Klein-Nishina + binding energy correction

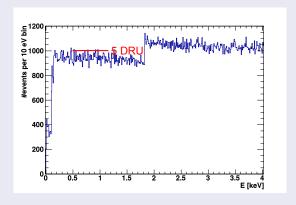

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)


A more detailed analysis: Klein-Nishina + binding energy correction

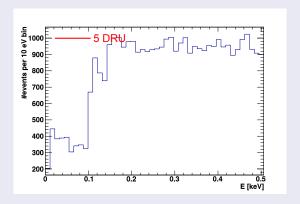
- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)



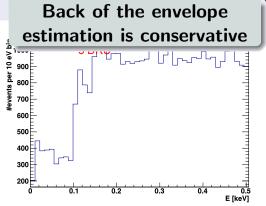
- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)



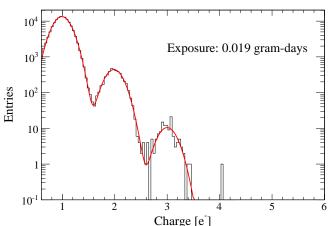
- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)



- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

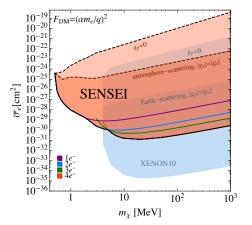


- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)


- at lower energies atomic binding energies are relevant
- partial energy denositions nonulate low F region (thin det)

protoSENSEI: commissioning run at surface: arXiv:1804.00088

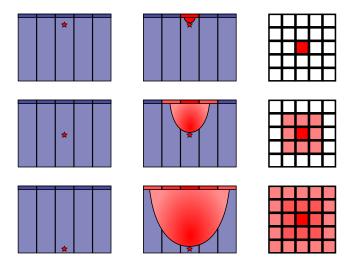
Observed spectrum using 800 samples per pixel



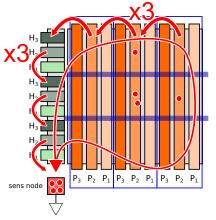
dark current: $\sim 1.1 \text{ e}^- / \text{pix/day}$; no events with 5-100 electrons

protoSENSEI: commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between ∼500 keV to 4 MeV!

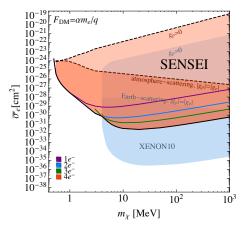

Terrestrial effects: Emken, Essig, Kouvaris, Sholapurkar (to appear)

Selection efficiency


$N_{e, \min}$	1	2	3	4	5
1. Single pixel	1	0.62	0.48	0.41	0.37
2. Nearest Neighbor	0.8	0.8	0.8	8.0	8.0
3. Noise	0.88	0.88	0.88	0.88	0.88
4. Bleeding	0.95	0.95	0.95	0.95	0.95
Total	0.67	0.41	0.32	0.27	0.24
Number of events	140,302	4,676	131	1	0

Diffusion

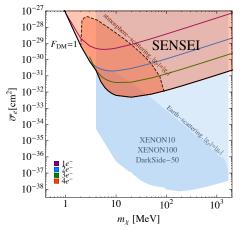
Hardware binning



The optimal effective pixel size can be chosen by using hw binning $\mu_{\rm sigle} = R_{\rm DC} \times \underbrace{\left(T_{\rm pix} \times n_{\rm pix}\right)}_{T_{\rm expo}} = \underbrace{\mu_{\rm binning}}_{\text{Eff DC}} = \underbrace{\left(n_{\rm bin} \times R_{\rm DC}\right)}_{\text{Eff DC}} \times \underbrace{T_{\rm pix} \times n_{\rm pix}/n_{\rm bin}}_{T_{\rm expo}}$

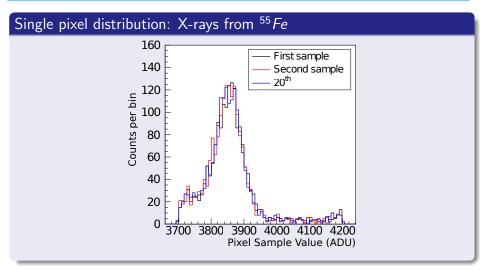
SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between \sim 500 keV to 4 MeV!



Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)

SENSEI commissioning run at surface: arXiv:1804.00088


First direct-detection constraints between ∼500 keV to 4 MeV!

Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)

Image taken with SENSEI: 20 samples per pixel

The gain is the same for all the samples

