The SENSEI[†] experiment

A zero noise detector for DM searches

Javier Tiffenberg for the SENSEI Collaboration

May 7, 2018

† Sub-Electron-Noise SkipperCCD Experimental Instrument

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

SENSEI: lower the energy threshold to look for light DM candidates

Detect DM-e interactions by measuring the ionization produced by the electron recoils. See arXiv:1509.01598

Idea: use electrons in the CCDs as target

SENSEI LDRD Collaboration (2015)

Develop a CCD-based detector with an energy threshold close to the silicon band gap (1.1 eV) using SkipperCCDs produced at LBL MSL

- Fermilab: Tiffenberg, Guardincerri, Sofo Haro
- Stony Brook: Rouven Essig
- LBNL: Steve Holland, Christopher Bebek

- Tel Aviv University: Tomer Volansky
- University of Oregon: Tien-Tien Yu
- Stanford University*: Jeremy Mardon

Successful completion of LDRD objectives (2017)

- Build the first working detector using Skipper-CCDs.
- Validate the technology for DM and ν experiments.
 - Probe DM masses at the MeV scale through electron recoil.
 - Probe axion and hidden-photon DM with masses down to 1 eV.

Fermilab

SENSEI Collaboration

Build a detector using Skipper-CCDs to search for light DM canditates

- Fermilab: Michael Crisler, Alex Drlica-Wagner, Juan Estrada, Guillermo Fernandez, Miguel Sofo Haro, Javier Tiffenberg
- Stony Brook: Rouven Essig
- Tel Aviv University: Liron Barack, Erez Ezion, Tomer Volansky
- Oregon University: Tien-Tien Yu
- + several additional students + more to come

Fully funded by Heising-Simons Foundation & Fermilab HEISING-SIMONS FOUNDATION

🚰 Fermilab

CCD: readout

3x3 pixels CCD

CCD: readout

3x3 pixels CCD

CCD: readout

3x3 pixels CCD

capacitance of the system is set by the SN: C=0.05pF \rightarrow 3 μ V/e

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

2 e⁻ readout noise roughly corresponds to 50 eV energy threshold

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

Lowering the noise: Skipper CCD

🛟 Fermilab

Lowering the noise: Skipper CCD

- Main difference: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples **Pixel value** = $\frac{1}{N} \Sigma_i^N$ (pixel sample)_i
- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

🚰 Fermilab

Lowering the noise: Skipper CCD

- Main difference: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples **Pixel value** = $\frac{1}{N} \Sigma_i^N$ (pixel sample)_i
- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

SENSEI: First working instrument using SkipperCCD tech

Sensors

- Skipper-CCD prototype designed at LBL MSL
- $\bullet\,$ 200 & 250 $\mu {\rm m}$ thick, 15 $\mu {\rm m}$ pixel size
- \bullet Two form factors 4k $\times 1k$ (0.5gr) & 1.2k $\times 0.7k$ pixels
- \bullet Parasitic run, optic coating and Si resistivity ${\sim}10 \text{k}\Omega$
- 4 amplifiers per CCD, three different RO stage designs

Instrument

- System integration done at Fermilab
- Custom cold electronics
- Modified DES electronics for read out
- Firmware and image processing software
- Optimization of operation parameters

Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples

Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples

Counting electrons: 0, 1, 2..

Image taken with SENSEI: 20 samples per pixel

Single pixel distribution: X-rays from ⁵⁵Fe

The gain is the same for all the samples

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

SENSEI: DM search operation mode

- Counting electrons \Rightarrow **noise has zero impact**
- It can take about 1h to read the sensors
- Dark Current is the limiting factor

It's better to readout continuously to minimize the impact of the DC

Dark Current	$\geq 1\mathrm{e}^-$	\geq 2e $^-$	\geq 3e $^-$
$[e^-pix^{-1}day^{-1}]$	[pix]	[pix]	[pix]
10 ⁻³	$1 imes 10^8$	$3 imes 10^3$	$7 imes10^{-2}$
10^{-5}	$1 imes 10^{6}$	$3 imes 10^{-1}$	$7 imes 10^{-8}$
10 ⁻⁷	$1 imes 10^4$	$3 imes 10^{-5}$	$7 imes10^{-14}$

Measured upper limit for the DC in CCDs is: $1 \times 10^{-3} e \ pix^{-1} day^{-1}$ arXiv:1611.03066 Could be orders of magnitude lower. Theoretical prediction is O(10⁻⁷)

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

SENSEI: reach of a 100g, zeroish-background experiment

SENSEI: electron recoil background requirements

The sensitivity is dominated by the lowest energy/charge bin

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

Back of the envelope calculation

A 100g detector that takes data for one year \rightarrow Expo = 36.5kg \cdot day

Assuming same background as in DAMIC:

- 5 DRU (events·kg⁻¹·day⁻¹·keV⁻¹) in the 0-1keV range
 - \rightarrow N_{bkg} = 36.5 kg \cdot day \times 5 DRU = 182.5 events
- Dominated by external gammas \rightarrow flat Compton spectrum

Back of the envelope calculation

A 100g detector that takes data for one year \rightarrow Expo = 36.5kg \cdot day

Assuming same background as in DAMIC:

- 5 DRU (events·kg⁻¹·day⁻¹·keV⁻¹) in the 0-1keV range
 - \rightarrow $\rm N_{bkg}=36.5~kg\cdot day \times 5~DRU=182.5$ events
- \bullet Dominated by external gammas \rightarrow flat Compton spectrum

182.5 events over the 278 charge bins in the 0-1keV range **Expect 0.65 bkd events in the lowest (2** e^{-}) charge-bin

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

Whats going on now: Installation @MINOS

Technology demonstration: installation at shallow underground site

‡ Fermilab

Whats going on now: Installation @MINOS

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

🛟 Fermilab

SENSEI commissioning run at surface: arXiv:1804.00088

Observed spectrum using 800 samples per pixel

dark current: $\sim 1.1 \text{ e}^-$ /pix/day; no events with 5-100 electrons

🗕 🛟 Fermilab

SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between \sim 500 keV to 4 MeV!

Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

Timeline

2016	2017	
LDRD funded, fabrication of SkipperCCD prototype	testing of prototype, received funding from HSF for S-10 and S-100	
2018	2019	
assembly and testing of S-10, take data	take more data with S-10, begin analysis assembly and testing of S-100	
2020	2021	
continue S-10 analysis, take data with S-100	S-100 analysis	

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

‡ Fermilab

SENSEI path

Summary

- SENSEI is the first dedicated experiment searching for electron recoils
- SENSEI's first results, using a prototype detector on the surface, probes 0.5-4 MeV masses for the first time, and larger cross sections than existing sub-GeV direct-detection constraints
- SENSEI experiment will use better sensors & collect almost 2 million times the exposure of this surface run in next \sim 2-3 years, probing large regions of uncharted territory populated by popular models
- Fully funded: 10g & 100g design/construction started.
 - Grant from Heising-Simons Foundation
 - Full technical support from Fermilab

BACK UP SLIDES

SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between \sim 500 keV to 4 MeV!

Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between ${\sim}500$ keV to 4 MeV!

Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)

A more detailed analysis: Klein-Nishina + binding energy correction

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

A more detailed analysis: Klein-Nishina + binding energy correction

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

A more detailed analysis: Klein-Nishina + binding energy correction

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

A more detailed analysis: MC simulation, G4 3D Monash model

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

A more detailed analysis: MC simulation, G4 3D Monash model

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

A more detailed analysis: MC simulation, G4 3D Monash model

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

A more detailed analysis: MC simulation, G4 3D Monash model

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low F region (thin det) Back of the envelope estimation is conservative

New Probes for Physics Beyond the Standard Model - KITP, Santa Barbara - April 9-12, 2018