New results from SENSEI

Sho Uemura

Tel Aviv University for the SENSEI Collaboration

SU was supported in part by the Zuckerman STEM Leadership Program

Cho	Llor	ura
0110	Uen	iura

New results from SENSEI

Sho Llemura

- SENSEI has delivered world-leading results in low-threshold DM direct detection
 - ▶ 2017: Demonstration of 0.068 *e*⁻ noise in SENSEI prototype
 - 2018: DM search with surface run of SENSEI prototype
 - 2019: DM search with underground run of SENSEI prototype
- Today we present *preliminary* results from the SENSEI run concluded last week
 - First DM search with a science-grade SENSEI CCD
 - Paper to follow in the next few weeks

The SENSEI Collaboration

Stony Brook University

OF OFFCON

Fermilab:

- F. Chierchie, M. Cababie, G. Cancelo, M. Crisler, A. Drlica-Wagner, J. Estrada,
 - G. Fernandez-Moroni, D. Rodrigues, M. Sofo-Haro, L. Stefanazzi, J. Tiffenberg

Stony Brook:

• L. Chaplinsky, Dawa, R. Essig, D. Gift, S. Munagavalasa, A. Singal

Tel-Aviv:

• L. Barak, I. Bloch, E. Etzion, A. Orly, S. Uemura, T. Volansky

U. Oregon:

• T.-T. Yu

Fully funded by Heising-Simons Foundation

& leveraging R&D support from Fermilab

Sho Uemura

SENSE

Electron recoils for sub-GeV dark matter

- We look for DM interactions with the electrons in a CCD
 - Benchmark models: DM-electron scattering, absorption
- Silicon bandgap gives us sensitivity to 1.2 eV excitations if we can capture and resolve a single electron

CCDs

- CCDs can read millions of charge packets with minimal loss
 - The result of decades of R&D in imaging CCDs
- Conventional CCDs are limited to noise of ~ 2e⁻

Amp

Amp

Skipper readout

- In a conventional CCD, charge moved to the sense node must be drained
 - You can integrate longer, but you cannot beat the 1/f noise
- The Skipper amplifier lets you make multiple measurements!

Skipper readout

- In a conventional CCD, charge moved to the sense node must be drained
 - You can integrate longer, but you cannot beat the 1/f noise
- The Skipper amplifier lets you make multiple measurements!

< 6 N

Sub-electron readout noise

- Skipper noise scales as $1/\sqrt{N}$
 - For the dark matter search we operate at N = 300, noise of ∼ 0.14e⁻
- We can count single electrons: self-calibrating charge measurement with zero noise
 - Other applications, such as a very clean measurement of the Fano factor in silicon

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Our CCDs

- 6144 \times 886 pixels (divided in quadrants), 15 μm pitch
- High-resistivity silicon 675 μ m thick, 1.59 × 9.42 cm²
- Designed by LBNL MSL, fabricated by DALSA
- The first dedicated production of Skipper CCDs for dark matter
 - 1.925 grams of active mass, up from 0.0947 in protoSENSEI
 - Orders of magnitude improvement in dark current and amplifier luminescence

CCD package

- Densely packable and minimizes radioactive contamination
- Silicon pitch adapter serves multiple functions:
 - Electrical interface to flex cable
 - Mechanical support, with perfectly matched thermal expansion
 - Thermal connection to copper tray through machined leaf spring

< 6 N

LTA readout board

- "Low Threshold Acquisition" single-board readout system for Skipper CCDs
- Compared to previous solutions: compact, flexible, scalable, reliable
- One LTA board reads one CCD; multiple LTAs can be run synchronously for multi-CCD systems

MINOS setup

- Shallow underground site reduces muon rate from cosmic rays; lead shielding reduces gamma rate from ambient radioactivity
- Cryocooler and insulating vacuum keep the CCD cold to minimize dark current

< 6 N

Inside the cryostat

 Shielding design adapted from DAMIC: cylindrical vacuum vessel with lead "plugs" above and below the CCD

CCD at 135 K, biased at 70 V

The dataset

- 20 hours exposure, 6 hours readout
- Analysis developed using 7 commissioning images
- Blinded dataset of 22 images, Feb. 25 — Mar. 20
- One quadrant is damaged, one has a light leak: we use the first two quadrants for the results presented here, total exposure 19.926 gram-days

Images!

- This is 1/5th of one quadrant
- Muons: straight tracks
- Electrons: curly tracks
- X-rays: round clusters

Searches and backgrounds

- Single-pixel searches (we exclude any pixel with a nonempty neighbor):
 - Single-electron: background-dominated
 - Two-electron: low-background
- Three-, four-electron clusters: zero-background (work in progress)

- Local sources of charge: high-energy clusters (ionizing radiation), CCD defects
- Spatially uniform sources of charge
 - Spurious charge: charge generated during readout
 - Dark current: charge generated during exposure by thermal excitation

Others?

Cuts: bad pixels/dark spikes

- Surface defects on the CCD can create pixels with high dark current
- We identify these with special high-temperature runs and by stacking images, and mask them out

Cuts: serial register hits

- Tracks that cross the serial register during readout can produce lines of charge in the image
- We mask out isolated horizontal lines of charge

- Some charge may be left behind when we transfer charge from one cell to the next
 - Surface defects can create traps that increase the bleeding tails in specific columns
- We mask out bleed regions above and to the right of high-charge pixels
- We identify high-bleed columns by looking for excess charge above high-charge pixels

Cuts: halo

- We see an excess of charge near high-charge pixels, even after masking out bleed regions
 - We suspect these are low-energy photons
- We apply a tight cut (>60 pixels from any high-charge pixel) for the 1e⁻ analysis

1e⁻ rate

- We see 3.188(90) × 10⁻⁴ e⁻/pixel in our images, from a total exposure of 1.380 gram-days
 - If all exposure-dependent, this is a 1e[−] rate of 3.363(94) × 10^{−4} e[−]/pixel/day
- Is this all dark current? Unlikely!
 - Extrapolation from higher temperatures predicts
 1 × 10⁻⁵ e⁻/pixel/day at our operating temperature of 135 K

Spurious charge measurement

- Measurements with shorter exposures show a limiting value for the CCD charge:
 - $1.66(12) \times 10^{-4} e^{-/\text{pixel}}$
 - Half of the 1e⁻ rate we see is due to spurious charge!
 - Optimization of the CCD voltage waveforms will reduce this background in future runs
- Subtracting the exposure-independent charge, our 1e- rate is 1.59(16) × 10⁻⁴ e⁻/pixel/day

1e- rate vs. shielding

- We have data with and without the outer ring of lead bricks
- Factor of 3 reduction in the rate of high-energy tracks → factor of 3 reduction in the 1e⁻ rate
 - There is some mechanism by which ionizing radiation generates charge uniformly in our CCD
 - Better shielding will very likely further reduce our 1e⁻ rate

Cuts: loose clusters

- For the 2e⁻ search, we use a smaller halo cut (to preserve exposure) but apply an additional cut to remove regions with higher charge density
- If two 1e⁻ pixels are within 20 pixels of each other, we remove a radius-20 circle around both
- This cut kills half of the 2e⁻ events with a 11% loss of exposure

2e⁻ rate

 After all cuts, we see 5 pixels with 2e⁻, from an exposure of 9.145 gram-days

March 27, 2020 25/ 30

Charge diffusion

- What is the probability for both electrons from a DM interaction to end up in the same pixel?
- We use muon tracks to measure diffusion as a function of depth
- 20.9% for 2*e*⁻ to stay in one pixel
- 72.7%, 74.4% for 3, 4e⁻ to form a contiguous cluster

Sho Uemura

σ

z

SENSE

Std:z>>hist con Max\$(abs(dBary))<1 && xMin>15 && xMax < 433 && yMin>20 && yMax<6180 && abs(iAngLS)>0.0

Limits on event rates

- 90% upper limits: 6.1 Hz/kg for $1e^-$, 5.6 \times 10^{-2} Hz/kg for $2e^-$
- We set new records for 1 e⁻ and 2e⁻ rates in semiconductors
 - cf. arXiV:2002.06937 from last Wine+Cheese

Limits on dark matter

- These are actual limits for 1e⁻ and 2e⁻ searches, and projected limits for 3 – 4e⁻ assuming we see zero events
 - Left to right: F_{DM} = 1 scattering (heavy mediator), F_{DM} = (αm_e/q)² scattering (light mediator), absorption
- Paper forthcoming in the next few weeks

3 + 4 = +

SENSEI@SNOLAB

- We are building the full-scale SENSEI experiment, deep underground at SNOLAB with a low-background shield
- "Phase 1" system is operating at SNOLAB

The future of Skippers

- SENSEI@MINOS demonstrates that Skipper CCDs have the performance we need to reach theory targets
 - SENSEI@SNOLAB: 100 grams
 - DAMIC-M: 1 kg
 - Oscura: 10 kg

